Open source is reshaping the way teams build and deploy AI tools, and OpenWebUI is a prime example. It’s a sleek, self-hostable front-end for local and remote LLMs like Ollama, designed to give developers a clean and intuitive interface to interact with models like LLaMA, Mistral, and more.
In this guide, we’ll walk you through how to run OpenWebUI locally using Docker Compose — a quick and reliable setup that includes:
- ✅ OpenWebUI (frontend/backend)
- 🧠 Ollama (local LLM inference engine)
- 🗃️ PostgreSQL with pgvector (for vector storage)
- 📊 pgAdmin (for managing your database)
Let’s dive in.
🧱 Prerequisites
Before we get started, make sure you have:
- Docker and Docker Compose installed
- At least 8–16 GB RAM (especially for running LLMs locally via Ollama)
- Git or any method to pull and run the project locally
Step 1: Create Your docker-compose.yml
Here’s the full docker-compose.yml
we’ll use to run all required services:
# docker-compose.yml
version: '3.8'
services:
openwebui:
image: ghcr.io/open-webui/open-webui:main
container_name: openwebui
ports:
- "3000:8080"
environment:
- DATABASE_URL=postgresql://openwebui:openwebui@db:5432/openwebui
- VECTOR_DB=pgvector
- PGVECTOR_DB_URL=postgresql://openwebui:openwebui@db:5432/openwebui
- OLLAMA_BASE_URL=http://ollama:11434
- CHUNK_SIZE=2500
- CHUNK_OVERLAP=500
volumes:
- openwebui-data:/app/backend/data
depends_on:
- db
- ollama
restart: unless-stopped
ollama:
image: ollama/ollama
container_name: ollama
ports:
- "11434:11434"
volumes:
- ollama-data:/root/.ollama
restart: unless-stopped
command: ["serve"]
db:
image: pgvector/pgvector:pg15
container_name: openwebui-db
environment:
- POSTGRES_USER=openwebui
- POSTGRES_PASSWORD=openwebui
- POSTGRES_DB=openwebui
ports:
- "5432:5432"
volumes:
- db-data:/var/lib/postgresql/data
restart: unless-stopped
pgadmin:
image: dpage/pgadmin4
container_name: pgadmin
environment:
- PGADMIN_DEFAULT_EMAIL=admin@domain.com
- PGADMIN_DEFAULT_PASSWORD=admin
ports:
- "8081:80"
volumes:
- pgadmin-data:/var/lib/pgadmin
depends_on:
- db
restart: unless-stopped
volumes:
openwebui-data:
db-data:
pgadmin-data:
ollama-data:
▶️ Step 2: Start Everything Up
To bring the entire stack up, just run:
docker-compose up -d
This command will:
- Launch the OpenWebUI interface on http://localhost:3000
- Expose pgAdmin at http://localhost:8081
- Start the Ollama inference server on port
11434
- Initialize a pgvector-enabled PostgreSQL instance for vector search support

🧠 Step 3: Load Your First Model (via Ollama)
Once Ollama is running, you can load a model like mistral
or llama3
:
ollama run mistral
Or pull it beforehand using:
ollama pull mistral
OpenWebUI will detect the Ollama server automatically via the OLLAMA_BASE_URL
environment variable and allow you to interact with the model directly from the web interface.
📊 Step 4: Manage Your Vector Database
You can log into pgAdmin at http://localhost:8081 using:
- Email:
admin@domain.com
- Password:
admin
Add a new server and connect it to the openwebui
PostgreSQL database using:
- Host:
db
- Port:
5432
- Username:
openwebui
- Password:
openwebui
This is especially helpful if you want to inspect how OpenWebUI stores chunks, vectors, and embeddings in your database.
🛑 Stopping the Stack
To shut everything down, run:
bashCopyEditdocker-compose down
If you want to keep your data (vector store, models, config), don’t worry — all data is persisted in named Docker volumes.
✅ You’re All Set!
You now have a fully functional local AI assistant running on your machine, with:
- A sleek, open-source web UI for interacting with LLMs
- Support for local models via Ollama
- Full vector search and document chunking
- A PostgreSQL + pgvector database backend
- Admin tools via pgAdmin
Pro Tips
- Use
ollama list
to view all downloaded models - Change the
CHUNK_SIZE
andCHUNK_OVERLAP
values in the environment to tune how your documents are split and stored - Mount custom folders inside the OpenWebUI volume for persistent document uploads
💬 Have Feedback?
We’d love to hear from you. If you’re using OpenWebUI internally or as part of your product stack, let us know how it’s going and what we can improve.